Research
Overview
My research focuses on mathematical aspects of quantum information theory and quantum complexity. I am particularly interested in the study of quantum channels, their capacities, and the mathematical structures about the underlying quantum systems.
Publications and preprints(alphabetical authorship convention unless starred)
-
Reverse-type Data Processing Inequality
Paula Belzig, Li Gao, Graeme Smith, Peixue Wu
arXiv:2411.19890, submitted, November 2024 -
Additivity of quantum capacities in simple non-degradable quantum channels
Graeme Smith, Peixue Wu
arXiv:2409.03927, to be submitted, September 2024 -
Lower bound for simulation cost of open quantum systems: Lipschitz continuity approach
Zhiyan Ding, Marius Junge, Philipp Schleich, Peixue Wu
arXiv:2407.15357, submitted August 2024 -
A note on the stabilizer formalism via noncommutative graphs
Roy Araiza, Jihong Cai, Yushan Chen, Abraham Holtermann, Chieh Hsu, Tushar Mohan, Peixue Wu, Zeyuan Yu
arXiv:2310.00762, Quantum Information Processing 23.3 (2024): 84. February 2024 -
Resource-Dependent Complexity of Quantum Channels
Roy Araiza, Yidong Chen, Marius Junge, Peixue Wu
arXiv:2303.11304, submitted, October 2023 -
Stability property for the quantum jump operators of an open system
Marius Junge, Peixue Wu
arXiv:2211.07527, in revision, November 2022 -
Heat kernel estimates for regional fractional Laplacians with multi-singular critical potentials in $C^{1,\beta}$ open sets
Renming Song, Peixue Wu, Shukun Wu
arXiv:2203.03891, submitted, March 2022 -
*Quantum secret sharing and tripartite information
Guangkuo Liu, Peixue Wu, Hanuel Kim, Marius Junge
arXiv:2012.08445, 2023 IEEE International Symposium on Information Theory (ISIT) (pp. 1931-1936). -
*Time fractional stochastic differential equation driven by pure jump Lévy noise
Peixue Wu, Zhiwei Yang, Hong Wang, Renming Song
arXiv:2009.06866, Journal of Mathematical Analysis and Applications 504.2 (2021): 125412.
Ongoing Projects
-
Quantum Channel Capacities
Investigating the additivity and superadditivity properties of quantum channel capacities in various quantum communication scenarios. -
Complexity related question
Developing lower bounds for different complexity notions, using quantum optimal transport approach.